TN007

Documentation of supported G- und M-Commands by AKKON

Last update, 7th of November 2016

www.burger-web.com

©2005-2016 Gerhard Burger

Inhalt und Historie

Nr	Datum	Description	
1	24. November 2004	Erstellung der Dokumentation	
2	10. Mai 2005	Erste Web-Version der Dokumentation	
		Erwteiterung der Dokumentation um die commande G79, G81	
3	4. August	Erweiterung der Dokumentation um die commande M10, M11, G86, G87, G88, G89	
4	29. Dezember 2005	Kleine Änderungen in der grafischen Darstellung (keine inhaltlichen)	
5	2. Januar 2006	Parameter for die Sub-D Buchse, Tasche und Rechteckzyklus korrigiert	
6	1. Oktober 2007	Parameter for Sub-D-Buchse, Tasche und Rechteckzyklus	
7	6. April 2008	Erweiterung um das Kommando M12 for den Automatikbetrieb	
8	22. April 2008	Erweiterung um den command M00 – Pause program	
9	07. Mai 2008	Erweiterung um den Befhel M51 – Schalten in den Manuellbetrieb	
10	04. Juni 2008	diverse Korrekturen	
11	08. Juni 2008	Erweiterung der Description des Werkzeugwechslers	
12	24. August 2008	Erweiterung der Description des Werkzeugwechslers	
13	30. August 2008	Erweiterung der Description des Werkzeugwechslers	
14	31. Oktober 2008	Erweiterung der Description des Werkzeugwechslers	
15	28. Dezember 2008	Berichtiung der Parameter for Gravuren, Berichtigung Bug Anzahl Teilstriche bei Potentiometer	
16	2. Jänner 2009	Aktualisierung automatische Werkzeugvermessung	
17	27. March 2012	Aktualisierung und Erweiterung G86, G89	
18	1. Februar 2013	Aktualisierung G54, Erweiterung G55	

Overview of supported G- and M-Commands (I)

Nr	command	Description	Example
1	M00	Pause program	Ab April 2008
2	M03	Spindle clockwise on	
3	M05	Spindle off	
4	M06	Move to work piece position	
5	M08	Cooling system on	
6	M09	Cooling system off	
7	M10	Vacuum cleaner on	
8	M11	Vacuum cleaner off	
9	M12	Wait until digital inut Run/Pause logical high	Ab April 2008
10	M30	Programm end	
11	M51	Switch to manual mode	Ab Mai 2008
12	M100	Wait for digital input	
13	M101	Limit switch configuration - see technical note limit switch configuration	Jänner 2013
14	M102	Set digital output	
15	G00	Fast movement	
16	G01	Line interpolation	
17	G02	Arc clockwise interpolation	
18	G03	Arc counter-clockwise interpolation	
19	G20	Data input in inch	Ab Version 1.1, 5. Oktober 2004
20	G21	Data input metric	Ab Version 1.1, 5. Oktober 2004
21	G40	Radius correction off	
22	G41	Radius correction left side on	nicht vollständig untersützt
23	G42	Radius correction right side on	nicht vollständig untersützt
24	G54	Set work piece zero point	
25	G55	Set work piece zero point	
26	G66	Engrave text	
27	G67	Set font style	
28	G68	Set text direction	
29	G69	Set font height	
30	G70	Set user defined font	

Overview of supported G- and M-Commands (II)

Nr	command	Description	Example
31	G74	Move to work piece zero point	
32	G76	Move to machine zero point	
33	G77	Move to tool change point	
34	G79	Drill cycle on position x, y, z	Ab Version 1.1
35	G81	Define drill cycle	
36	G86	Generate rectangular hole	
37	G87	Generate rectangular pocket	
38	G88	Generate Sub-D Pocket	
39	G89	Generate potentiometer scale	
40	G90	Absolutbe data	
41	G91	Incemental data	
42	G92	Set work piece zero (absolute position)	

G-Commands

G00, G01, G02, G03, G66, G67, G68

©2005-2016 Gerhard Burger

G00 Fast line interpolation outside material

G01 Line interpolation inside material

If a coordinate does not change in relation to the last command, the position can be skipped Example: G01 X50 Y30 move to current position and do not change z-coordinate

G02 Arc interpolation clockwise

G03 Arc interpolation counter-clockwise

©2005-2016 Gerhard Burger

Move to zero points

G74 Move to work piece zero point

G76 Move to machine zero point

G77 Move to tool change point

Feed command F100 means: Move with velocity 100 mm/min

G20 Uses metric measurement system

Description

Weist die CNC-Steuerung an, dass alle weiteren Massangaben im metrischen System eingegeben werden.

Syntax

G20

<u>Example</u>	
; Example-command M08	
M03	; schalte Frässspindel ein (Drehung im Uhrzeigersinn)
G20	; verwend metrisches Masssystem
G00 Z1	; fahre im Eilgang zur Position Z=1mm
G01 Z-2.5	; fahre im Fräsmodus zur Position Z=-2.5 mm
M09	; schalte Kühlmittelpumpe aus
M30	; Programm end

G21 Verwend Zoll-Masssystem

Description

Weist die CNC-Steuerung an, dass alle weiteren Massangaben im Zoll-System eingegeben werden. 1 Zoll entspricht 25.4 mm.

<u>Syntax</u>

G21

; Example-command M08		
M03	; schalte Frässspindel ein (Drehung im Uhrzeigersinn)	
G21	; verwend Zoll-Masssystem	
G00 Z1	; fahre im Eilgang zur Position Z=1 Zoll (=25.4 mm)	
G01 Z-0.5	; fahre im Fräsmodus zur Position Z=-2.5 mm (=12.75 mm)	
M09	; schalte Kühlmittelpumpe aus	
M30	; Programm end	©2005-2016 Gerhard Burger

G40 millradiuskorrektur ausschalten

Description

Weist die CNC-Steuerung an, dass bei alle weiteren Massangaben der millradius in der x-y-Ebene nicht berücksichtigt werden soll.

<u>Syntax</u>

G40

; Example-comm	nand M08
G01 Z-2.5	; fahre im Fräsmodus zur Position Z=-2.5 mm
G40	; millradiuskorrektur ausschalten
G01 Z-1	
G01 X30 Y10	; fahre an die Position x=10 und Y=10
M30	; Programm end

Figure 1.3: Example einer Gravur mit dem command G66

G41 millradiuskorrektur im Uhrzeigersinn

Description

Weist die CNC-Steuerung an, dass bei alle weiteren Massangaben der millradius in der x-y-Ebene berücksichtigt werden soll.

<u>Syntax</u>

G41

Figure 1.3: Example for eingeschaltete millradiuskorrektur

G42 millradiuskorrektur im Gegenuhrzeigersinn

Description

Weist die CNC-Steuerung an, dass bei alle weiteren Massangaben der millradius in der x-y-Ebene berücksichtigt werden soll.

<u>Syntax</u>

G42

Figure 1.3: Example for eingeschaltete millradiuskorrektur

G54 Setz work piece zero point relative to current work piece

Description

Set work piece zero point relative to curren work piece zero point

<u>Syntax</u>

G54 Xxxx Yxxx Zxxx Axxx

Example

;-----Example command G54 G01 Z5 ; move to position Z= 5 mm **G54 X100 Y10** ; **add x=100 mm and y=100 mm to the current work piece zero point** G01 X30 Y20 G01 Z-2 G01 X100 ; move to position x=100 M30 ; Program end

Figure : Redefinition of work piece zero points

G55 Set work piece zero point absolute to machine zero point

Description

Set work piece zero point absolute to machine zero point

<u>Syntax</u>

G55 Xxxx Yxxx Zxxx Axxx

Example

Figure : Redefinition of work piece zero points

G66 Gravieren von Texten (I)

Description

Mit dem command G66 können Texte auf der x-y-Ebene graviert werden. Zur Verfügung stehen aktuell acht Vektorschriften im "Borland stroked Vector Font"-Format. Der command steht in Verbindung mit den commanden G67 und G68, mit deren Hilfe die Textausgabe formatiert werden kann.

Figure 1.1: Gravur von Texten mit dem command G66

Ccommand und Parameters

Nr.	Parameter	Description	Einheit	Bemerkungen
1	X, Y, Z	Position des Textes	mm	
2	@	der zu gravierend Text	mm	
3	R	Rückbewegung zur Basis	mm	Optional (Standard = 0.5 mm)
4	E	Eintauchtiefe des Gravurstichels, von der Basis	mm	Optional (Standard = 0.5mm)
5	P	Streckungsfaktor	%	z.B. P1.1 10 % grösser (optional)

©2005-2016 Gerhard Burger

G66 Gravieren von Texten (II)

Figure 1.2: Parameter for die Höheneinstellungen bei Gravuren

Example

G66 X30 Y10 B"Hallo Welt" E1.15 R1 P1

Bemerkungen

Das "Borland stroked Vector Font"-Format wurde von der Firma Borland entwickelt. Die Schriftdateien haben zumeist die Dateiendung ".chr" (z.B. gothic.chr). Im Internet findet man kostenlose Schrifteditoren zum Erstellen eigener Schriften oder Logos.

G66 Gravieren von Texten (III)

Figure 1.3 Parameter for die text direction bei Gravuren

G66 Gravieren von Texten (IV)

Example

;----- Example-command for den G00 X30 Y10 Z10 G00 Z1 G67 A8 O0 H5 G68 C1 D1 G66 X30 Y10 @"Hello world" E1.15 R1 P1

; fahre in die Position ; fahre in die Startposition des Gravurstichels ; verwend Font Nr.8, horizontaler Text, Höhe 5mm ; zentriere Text in der Mitte **; engrave text "Hello world"**

Figure 1.3: Example einer Gravur mit dem command G66

G81 Bohrzyklus definieren, G79 Bohrzyklus durchführen

Example

G79 X40 G79 X80

;----- Example-command for den G81 Z5 B3 F3 H3 G79 X10 Y20 Z0

;Bohrtiefe z = 5 mm (positive coordinate entspricht , Rückfahrweg über work piece B = 3mm, F= 30mm/s. Anzahl der Hits ;coordinate z entspricht der Startposition des Bohrers

Figure 1.3: Example einer Gravur mit dem command G66

Zu beachten bei der Verwendung von G41 und G40 (I)

Unerwünschte Ausgabe bei der Erzeugung von CNC-Code

Im G41 oder G42-Modus kann durch falsche Programmierung die zu erzeugend Geometrie u.U. nicht hergestellt werden. Ein Example ist abgebildet in Figure 1.

Figure 1: Nicht herstellbare Geometrie durch Fehlprogrammierung

... N00010 T01 ;(5mm Durchmesser) N00020 G41 N00030 G00 X30 Y20 N00040 G01 X-4.5 Y14.309 N00050 G02 X4.5 Y14.309 i4.5 j-14.309 N00060 G01 X27.25 Y7.155...

Zu beachten bei der Verwendung von G41 und G40 (II)

Im dargestellten Example soll mit Werkzeug T01 eine Kontur im G41-Modus erzeugt werden. Die Kontur beginnt mit einer Geraden geht über einen Kreisbogen und endt wieder in eine Gerade. Mit dem gewählten Werkzeug ist es allerdings nicht möglich den Kreisbogen zu erzeugen, da das Werkzeug den Kreisbogen nicht erreichen kann.

Dazu kommt, dass die erste Gerade (obere) durch den Kreisbogen geht Example 2

Im obigen Programm wurde die Y-coordinate in Programmzeile N00030 auf Y=30mm geändert. Mit dem gleichen Werkzeug erhält man die in Figure 2 dargestellte Ausgabe:

Figure 2: Fehlerhafte Ausgabe durch schlechte Werkzeugwahl Das entsprechend CNC-Programm

N00010 T01 ; (d =5mm) N00020 G41 N00030 G00 X30 Y30 N00040 G01 X-4.5 Y14.309 N00050 G02 X4.5 Y14.309 i4.5 j-14.309 N00060 G01 X27.25 Y7.155

Nach Änderung des Werkzeugdurchmessers von 5mm auf z.B. 2mm wird schliesslich die gewünschte Ausgabe erzeugt.

G86 / G87 Fräsen einer rechteckigen Frästasche (I)

Description

Mit dem command G86 kann eine rechteckige Ausfräsung mit abgerundeten Ecken erzeugt werden. Der command G87 führt zudem eine Ausräumung der Tasche durch.

Example

;------ Example-command for eine rechteckige Frästasche N0001 G87 X50 Y30 Z100 L100 B40 R10 U4 W0.1 V2 Q0 ; fräse rechteckige Frästasche

Bei G86 wird nur dir Aussenkontur erzeugt, es erfolgt keine Ausräumung

<u>Parameter</u>

Description	Parameter	Einheit	Bemerkungen
Postion des Rechteckes (Mittelpunkt)	X, Y, Z	Mass in mm	
Länge	L	Mass in mm	
Breite	В	Mass in mm	
Radius	R	Mass in mm	
Drehwinkel Phi	Q	Mass in °	
Zustellung dz	V	Mass in mm	
Schlichtbreite	W	Mass in mm	
depth	U	Mass in mm	
Vorschub	F	mm/min	

G86 / G87 Fräsen einer rechteckigen Frästasche (II)

Figure 1.4: Parameter for die Definition einer rechteckigen Frästasche

G86/G87 Fräsen einer rechteckigen Frästasche (III)

Figure 1.5: Parameter for die Definition einer rechteckigen Frästasche

G86/G87 Fräsen einer rechteckigen Frästasche (IV)

Rotation der Tasche um den Winkel phi

Figure 1.6: Parameter for die Definition einer rechteckigen Frästasche

G88 Fräsen einer Tasche for einen Sub-D-Stecker/eine Sub-D-Buchse (I)

Description

Mit dem command G88 kann eine Ausnehmung for einen Sub-D-Stecker oder einer Sub-D-Buchse erzeugt werden.

Example

Figure 1.7: Parameter for die Definition einer rechteckigen Frästasche

Bemerkung: Der Winkel alpha ist in der aktuellen Version von AKKON auf 10° festgelegt

G88 Fräsen einer Tasche for einen Sub-D-Stecker/eine Sub-D-Buchse (II)

Parameter

Description	Parameter	Einheit	Bemerkungen
Postion des Rechteckes (Mittelpunkt)	X, Y, Z	Mass in mm	
Länge	L	Mass in mm	
Breite	В	Mass in mm	
Radius	R	Mass in mm	
Drehwinkel Phi	Q	Mass in °	
Zustellung dz	v	Mass in mm	
Schlichtbreite	w	Mass in mm	
depth	U	Mass in mm	

Figure 1.8: Parameter for die Definition einer rechteckigen Frästasche

G89 Engraving of potentiometer scale (I)

Description

Create scale

Figure 1.9: Engraved scale for a potentiometer using G89 command

G89 Engraving of potentiometer scale (II)

<u>Parameter</u>

Nr.	Parameter	Description	Einheit	Bemerkungen
1	X, Y, Z, A	position of scale (middle point of radiants)	mm	
2	R	inner radius of main line	mm	
3	В	length of main line	mm	
4	L	inner radius of fine lines	mm	
5	Р	length of fine lines	mm	
6	Q	gradient of start	o	
7	w	gradient of end	o	
8	U	depth of main lines	mm	
9	E	depth of fine line	mm	
10	С	count of main lines	1	
11	D	count of fine lines	1	
12	к	safety distance	mm	standard 0.5 mm if not set once
13	F	feed	mm/min	
14	V	plunge feed	mm/min	

G88 Fräsen einer Tasche for einen Sub-D-Stecker/eine Sub-D-Buchse (III)

Rotation der Sub-D-Ausnehmung um den Winkel phi

Figure 1.9: Parameter for die Definition einer rechteckigen Frästasche

G90/G91 Kettenmass ein/Kettenmass aus

Figure 1.3: Example einer Gravur mit dem command G66

G92 Set work piece zero point to absolute position

Beispiel

```
G92; no parameter, set work piece zero point to x, y, z, a, ... = 0
```


Figure: example use of G92 command

M-Commands

M00, M03, M04, M05, M08, M09, M10, M11, M12, M30, M51

M00 Pause programm

Description

Pause current program and continue if user pushes "START"-button

<u>Syntax</u>

M00

Example

; Example-comm	and M00
G00 Z1	; fal
M00	; pa
G01 Z-2	; fal
M05	; sc

fahre im Eilgang zur Position Z=1 **pausiere Programm** fahre im Fräsmodus zur Position Z=-2 schalte Frässpindel aus

M03 Main spindle clockwise on

Description

Schaltet die Frässpindel ein. Wenn ein Phasen-Anschnitt-Steuerungsmodul eingesetzt wird, dann wird die zuvor über den command Sxxxx gewählte Drehzahl eingestestellt. Die Frässpindel dreht im Uhrzeigersinn.

<u>Syntax</u>

M03

Example

; Example-commar	nd M03
M03	; schalte Frässspindel ein (Drehung im Uhrzeigersinn)
G00 Z1	; fahre im Eilgang zur Position Z=1
G01 Z-2	; fahre im Fräsmodus zur Position Z=-2
M05	; schalte Frässpindel aus

M04 Main spindle counter-clockwise on

Description

Schaltet die Frässpindel ein. Wenn ein Phasen-Anschnitt-Steuerungsmodul eingesetzt wird, dann wird die zuvor über den command Sxxxx gewählte Drehzahl eingestestellt. Die Frässpindel dreht im Gegenuhrzeigersinn. Syntax

M04

Example

; Example-command M04
M04
G00 Z1
G01 Z-2
M05

; schalte Frässpindel ein (Drehung im Gegenuhrzeigersinn) ein

; fahre im Eilgang zur Position Z=1

; fahre im Fräsmodus zur Position Z=-2

; schalte Frässpindel aus

M05 Spindle off

Description

Switch of main spindle

<u>Syntax</u>

M05

Example

; Example-command	M05
M03	
G00 Z1	
G01 Z-2	
M05	

; switch on main spindle clockwise ; move fast movement to position z=1 ; line interpolation to position Z=-2 ; switch of main spindle

M08 Kühlemittelpumpe einschalten

Description

Schaltet die Kühlmittelpumpe ein.

Syntax 3 1

M08

Example

; Example-command M08	
M03	; schalte Frässspindel ein (Drehung im Uhrzeigersinn)
M08	; schalte Kühlmittelpumpe ein
G00 Z1	; fahre im Eilgang zur Position Z=1
G01 Z-2	; fahre im Fräsmodus zur Position Z=-2
M09	; schalte Kühlmittelpumpe aus
M05	; schalte Frässpindel aus

M09 Kühlemittelpumpe ausschalten

Description

Schaltet die Kühlmittelpumpe aus.

Syntax 8 1

M09

; Example-command M09	
M03	; schalte Frässspindel ein (Drehung im Uhrzeigersinn)
M08	; schalte Kühlmittelpumpe ein
G00 Z1	; fahre im Eilgang zur Position Z=1
G01 Z-2	; fahre im Fräsmodus zur Position Z=-2
M09	; schalte Kühlmittelpumpe aus
M05	; schalte Frässpindel aus

M10 Staubsauger einschalten

Description

Schaltet die Kühlmittelpumpe ein.

<u>Syntax</u>

M10

Example

; Example-comm	and M10
M03	; schalte Frässspindel ein (Drehung im Uhrzeigersinn)
M10	; schalte Staubsauger ein
G00 Z1	; fahre im Eilgang zur Position Z=1
G01 Z-2	; fahre im Fräsmodus zur Position Z=-2
M11	; schalte Staubsauger aus
M05	; schalte Frässpindel aus

M11 Staubsauger ausschalten

Description

Schaltet die Kühlmittelpumpe aus.

<u>Syntax</u>

M11

; Example-command M11	
M03	; schalte Frässspindel ein (Drehung im Uhrzeigersinn)
M10	; schalte Staubsauger ein
G00 Z1	; fahre im Eilgang zur Position Z=1
G01 Z-2	; fahre im Fräsmodus zur Position Z=-2
M11	; schalte Staubsauger aus
M05	; schalte Frässpindel aus

M12 Wait

Description

Pausiert ein aktuelles Program im Automatikbetrieb bis am digitalen Eingang HallInt der logische Pegel 1 eingestellt ist

Syntax

M12 Command Timeout (optional)

; Exampl	e-command M12
G00 X0 Y0	; fahre im Eilgang zur Position
M10	; schalte z.B. Plasmaflamme ein
M12	; warte bis am digitalen Eingang HallInt der Pegel 1 anliegt
M12 C3 T5000	; warte bis am digitalen Eingang HallInt der Pegel 1 anliegt oder die Zeit Delta t =
; 5000 N	Aillisekunden vorbei sind (Bsp. Warte bis Plasma-Brenner die Freigabe for
; den So	chneidprozess erteilt (künftige Version)
G01 X100 Y100	; fahre im Fräsmodus zur Position X=100mm, Y=100mm
M11	; schalte Plasmabrenner aus
Parameter	

derze	eit ist	nur	das	Kommando	M12	implementiert

Nr.	Parameter	Description	Einheit	Bemerkungen
1	С	Command		 Fälle: C=0; Warte bis am Eingang Hallint der logische Pegel 0 anliegt C=1; Warte bis am Eingang Hallint der logische Pegel 1 anliegt C=2; Warte bis am Eingang Hallint der logische Pegel 0 anliegt oder die Zeit Delta T verstrichen ist C=3; warte bis am Eingang HallInt der logische Pegel 1 anliegt oder die Zeit Delta T verstrichen ist
2	Т	Timeout	ms	Optionaler Parameter, Zeit, nach der die Warteschleife jedenfalls beendt werden soll

M30 Programm end

Description

Indicates that control system that the program has to be finished. All following program lines are ignored.

<u>Syntax</u>

M30

; Example-command M30	
M03	; switch on main spindle clockwise
M08	; switch on cooling system
G00 Z1	; fast movement to position Z-1
G01 Z-2	; move to position Z-2
M09	; swithc off cooling system
M05	; switch off main spindle
M30	; Program end

M51 Schalten in den Manuellbetrieb

Description

Zeigt der Maschinensteuerung an, dass in den Manuellbetrieb geschaltet werden soll. Dieses Kommando ist speziell bei der Defintion eines Werkzeugwechsels sinvoll.

<u>Syntax</u>

M51

; Example-command M51	
M03	; schalte Frässspindel ein (Drehung im Uhrzeigersinn)
M08	; schalte Kühlmittelpumpe ein
G00 Z1	; fahre im Eilgang zur Position Z=1
G01 Z-2	; fahre im Fräsmodus zur Position Z=-2
M09	; schalte Kühlmittelpumpe aus
M05	; schalte Frässpindel aus
M51	; schalte in den Manuellbetrieb

M100 Wait for digital input

Description

Wait until a digital input has switched to a pre-defined state. Furthermore, a timeout can be defined that generates a timeout message

<u>Syntax</u>

M100 M0x1234567 S0x1234 567 D133232

<u>Parameter</u>

Nr	Para- meter- name	Description	Unit	Description
1	I	Mask	[1]	Bit mask of digital inputs that will be checked. The mask can be in binary, decimal of hexadecimal format. All other inputs will be ignored
2	S	Set value	[1]	If inputs have turned to set value, then process next G-Code-Command
3	D	Timeout	[ms]	If Timeout has reached, generate message

Example

;----- Beispiel-Befehl M100 M100 I0x000000FF S0x000000CC D1000

; check 8 lowest bits and process next step if inputs have reached the state 0x000000CC. Timeout 1000 ms

M102 Set digital output

Description

Set digital outputs according to mask

<u>Syntax</u>

M102 M0x1234567 Mxx Oxx

Parameter

Nr	Para- meter- name	Descripton	Unit	Description
1	I	Mask	[1]	Bit mask of outputs. Mask can be binary, decimal or hexadecimal value. All other bits will be ignored.
2	0	Operation	[1]	Setzen, Rücksetzen des Ausganges

	Bit masks	
Example	; \$0001	A00
	; \$0002	A01
N0000 G00 X0 Y0 Z0	; \$0004	A02
N0010 M102 M\$0FAA O1	; \$0008	A03
F500	; \$0010	A04
N0020 M102 M0b10001001 O0	; \$0020	A05
G01 X00	; \$0040	A06
N0030 M102 M4 O1 ; set output A02	•	
G01 X100	; \$0200	Spindle on
N0040	; \$0400	Spindle direction
N0050 M30	; \$0800	Spindle lock

Definition eines Werkzeugwechsels T-Kommando

Parametrierung in AKKON.ini

AKKON.ini enthält Parameter zur Definition der Werkzeugwechsler. Folgende Parameter sind definierbar:

Allgemeiner Parameter für die Werkzeugwechsler

Nr.	Parameter	Beschreibung
1	TurrentCount	Anzahl der Werkzeugwechsler

Parameter für einen Werkzeugwechsler Turretxx

Nr.	Parameter	Beschreibung
1	ToolCount	Anzahl der Werkzeuge
2	ManualTurrent=1	Angabe, ob es sich um vollautomaische Werkzeugwechsler handelt. Falls nicht, dann warte AKKON Desk nach jedem Werkzeugwechsel auf die Bestätigung für die Fortührung des Programmes

Beispiel:

[TURRET] TurretCount=2

[TURRET00] Delay=300 ManualTurret=0 ToolCount=6

[TURRET01] Delay=300 ManualTurret=1 ToolCount=2

Definition eines Werkzeugwechsels T-Kommando

Description

AKKON Desk unterstützt mehrere Werkzeugwechsler mit jeweils maximal 100 Werkzeugen. Der Ablauf eines Werkzeugwechels kann durch den Benutzer als Makro hinterlegt werden. AKKON Desk unterteilt einen Werkzeugwechsel dabei in die vier Aufgaben:

Aufgabe 1: Fahren in die Werkzeugwechselposition

Aufgabe 2: Auswahl des Werkzeug-Einlagerposition

Aufgabe 3: Werkzeug ablegen

Aufgabe 4: Werkzeug spannen

Jede der vier Aufgaben enthält keines bis mehrere Kommandos in Form von DIN 66025 G-Code. for jedes Werkzeug wird for jede der vier Aufgaben ein File erzeugt.

Identifikation der Dateien, welche den commandscode entahlten:

Nr.	Wechsler	Werk- zeuge	Dateiname	Description
1	0	0	Turret0_Tool0_Home.txt	G-Code zum Fahren in die "Home"-Position von Werkzeug 0 von Werkzeugwechsler 0
2	0	0	Turret0_Tool0_Get.txt	Code zum "Holen" von Werkzeug 0
3	0	0	Turret0_Tool0_Select.txt	Code zur Auswahl von Werkzeug 0 in Werkzeugwechsler 0
4	0	0	Turret0_Tool0_Store.txt	Code zum Einlagern von Werkzeug 0 in Werkzeugwechsler 0
6	0	1	Turret0_Tool1_Home.txt	
7	0	1	Turret0_Tool1_Move.txt	
8	0	1		
9	1	0	Turret1_Tool0_Home.txt	
10	1	0	Turret1_Tool0_Get.txt	

Definition eines Werkzeugwechsels T-Kommando

Parametrierung in AKKON.ini

AKKON.ini enthält Parameter zur Definition der Werkzeugwechsler. Folgend Parameter sind definierbar:

Nr.	Parameter	Description
1	TurrentAvailable	Angabe of mindestens ein Werkzeugwechsler vorhanden ist
2	Delay=300	Wartezeit nach einem Werkzeugwechsel
3	ManualTurrent=1	Angabe, ob es sich um vollautomaische Werkzeugwechsler handelt. Falls nicht, dann warte AKKON Desk nach jedem Werkzeugwechsel auf die Bestätigung for die Fortührung des Programmes
4	Count	Anzahl der Werkzeugwechsler
6	Turret00 Count=4	Anzahl der Werkzeuge von Werkzeugwechsler 0
7	Turret01 Count=4	Anzahl der Werkzeuge von Werkzeugwechsler 1
8	Turret02 Count=3	Anzahl der Werkzeuge von Werkzeugwechsler 2
9	Turret03 Count=2	Anzahl der Werkzeuge von Werkzeugwechsler 3
10	Turretnn Count=2	Anzahl der Werkzeuge von Werkzeugwechsler nn, Liste bis 19 Werkzeugwechsler frei definierbar

Example 1: Definition of turrent

Assumption: Fräsmaschine mit sechs Werkzeugwechselpositionen Spindel mit automatischer Spann- bzw. Entspannmöglichkeit (z.B. pneumatisch)

Defintion in AKKON.ini

[TURRET] TurrentAvailable=1 Delay=300 ManualTurrent=0 Count=6 Turret00 Count=1 Turret01 Count=1 Turret02 Count=1 Turret03 Count=1 Turret04 Count=1 Turret05 Count=1

// mindestens 1 Werkzeugwechsler ist vorhanden

// vollautom autoamtischer Werkzeugwechsel

- // 4 Werkzeugwechsler
- // Werkzeugwechsler 0 mit 1 Werkzeug
- // Werkzeugwechsler 1 mit 1 Werkzeug
- // Werkzeugwechsler 2 mit 1 Werkzeug
- // Werkzeugwechsler 3 mit 1 Werkzeug
- // Werkzeugwechsler 4 mit 1 Werkzeug
- // Werkzeugwechsler 5 mit 1 Werkzeug

Example 2: Definition eines Werkzeugwechslers

Annahme: Fräsmaschine mit zwei Werkzeugwechlsern Wechsler 0 mit 4 Werkzeugen, Wechsler 1 mit 2 Werkzeugen Spindel mit automatischer Spann- bzw. Entspannmöglichkeit (z.B. pneumatisch)

Defintion in AKKON.ini

[TURRET] TurrentAvailable=1 Delay=300 ManualTurrent=0 Count=2 Turret00 Count=4 Turret01 Count=2

// mindestens 1 Werkzeugwechsler ist vorhanden

// vollautom autoamtischer Werkzeugwechsel

// 4 Werkzeugwechsler

// Werkzeugwechsler 0 mit 1 Werkzeug

// Werkzeugwechsler 1 mit 1 Werkzeug

Example: Ablauf eines Werkzeugwechsels

Schritt 1: Fahre in die Home-Position von Werkzeug Ti Schritt 2: Wähle den Einlagerplatz von Werkzeug Ti Schritt 3: Lege Werkzeug Ti im Werkzeugwechsler ab Schritt 4: Fahre in die Home-Position von Werkzeug Tj Schritt 5: Wähle den Einlagerplatz von Werkzeug Tj Schritt 6: Hole Werkzeug Tj aus dem Einlagerplatz

Turret control

The AKKON system supports multiple turrets with a variable count of tools. Every tool has ist own definition for tool change.

A tool change is processed in the following sequence:

Step 1: Move to home position of current tool Ti Step 2: Select the free place for tool Ti Step 3: Store tool Step 4: If new tool is part of another turret move to tool Tj Step 5: Select Tj in turret Step 6: Get tool Tj from turret

Every step can be defined by the user in a separarte file that holds lines of DIN 61025 G-Code. All files are located in the subfolder Turret of the AKKON application directory. All files that relate to a specific turret are identified by the word Turret plus the number of the Turret.

Turret0_Tool0_Home.txt

A tool that is related to a specific turret is identified by the word Tool plus the number of the tool

Turret0_Tool0_Home.txt

Lastly, the Step is specified by the postfix Home (Step 1), Select (Step 2), Store (Step 3) and Get (Step 4)

Turret0_Tool0_Home.txt

Example: Turret1_Tool2_Store.txt Specification ot storing tool 2 of turret 1.

Turret control

Parameters in AKKON.ini

The turret system is specifid in the section [Turret]

ManualTurret specifies if the tool change is done manually or automatically Count: specifies the count of turrets Turretxx Count=4, specifies the count of tools ot a given turret.

Example:

[TURRET] TurretAvailable=0 TurretDelay=300 ManualTurrent=1 TurretCount=1 Turret00 Count=4 Turret01 Count=8 Turret02 Count=3 Turret03 Count=2

0..false, 1..true if Turret is available then send this value to AKKON CNC controller Inform user by a dialog that the tool will be changed yet

Implementation for Turrets

Case 1: 6 Turrets with 1 tool each

Case 2: 2 turrets, one with 4, one with 8 tools

Example eines Werkzeugwechsel mit einem Werkzeugwechsler

Description

Dieses Example zeigt ein CNC-Programm bei dem Werkzeugwechsel mit einem Werkzeugwechsler durchgeführt werden.

Exampleprogramm

;	- Example Werkzeugwechel mit verschiedenen			
Werkzeugwechslern				
M03	; schalte Frässspindel ein (Drehung im			
Uhrzeigersinn)				
Т03	; führe einen Werkzeugwechsel aus			
M08	· schalte Kühlmittelpumpe ein			
G00 Z1	: fahre im Eilgang zur Position Z=1			
G01 Z-2	: fahre im Fräsmodus zur Position Z=-2			
M09	; schalte Kühlmittelpumpe aus			
T19	; führe einen Werkzeugwechsel aus			
M05	· schalte Frässpindel aus			
M30	· Programm end			
	, r rogramm ond			
	\mathbf{h}			
	``			

Inhalt der Exampledateien for den Werkzeugwechsel

Schritt 1: Fahren in die Werkzeugwechselposition Datei: Turret0_Tool3_Home.txt

G00 Z50 G00 X20 Y200 M05

Schritt 2: Durchforhren des Werkzeugwechsels Datei: Turret0_Tool3_Select.txt

G00 A100 G00 B100

Schritt 3: Fortführen des Programmes Datei: Turret0_Tool3_Store.txt

G00 Z30 M11 ; Spannzange lösen G00 Z50

Schritt 5: Durchforhren des Werkzeugwechsels Datei: Turret0_Tool19_Select.txt

G00 A100 G00 B300

Schritt 6: Hole Werkzeug aus Einlegeplatz Datei: Turret0_Tool19_Get.txt

G00 Z30 M12 ; Spannzange spannen G00 Z50

©2005-2016 Gerhard Burger

Example eines Werkzeugwechsels mit mehreren Werkzeugwechslern

Description

Dieses Example zeigt ein CNC-Programm bei dem zwei Werkzeugwechsel durchgeführt werden. In Zeile N00060 erfolgt dabei ein Werkzeugwechsel an Werkzeugwechsler 1

Exampleprogramm

; Example Werkzeugwechel mit verschiedenen Werkzeugwechslern

N00000 M03 ; schalte Frässspindel ein (Drehung im N00010 Uhrzeigersinn)

N00020 T03

N00030 M08 ; schalte Kühlmittelpumpe ein N00040 G00 Z1 ; fahre im Eilgang zur Position Z=1 N00050 G01 Z-2 ; fahre im Fräsmodus zur Position Z=-2

N00060 T21

N00070M09; schalte Kühlmittelpumpe ausN00080M05; schalte Frässpindel ausN00090M30; Programm end

Inhalt der Exampledateien for den Werkzeugwechsel

Schritt 1: Fahren in die Werkzeugwechselposition Datei: Turret0_Tool1_Home.txt

G00 Z50 G00 X20 Y200 M05

Schritt 2: Durchforhren des Werkzeugwechsels Datei: Turret0_Home.txt

M00

Schritt 3: Fortführen des Programmes Datei: Turret0_Home.txt

M03

Schritt 1: Fahren in die Werkzeugwechselposition Datei: Turret0_Home.txt

G00 Z50 G00 X20 Y200 M05

Schritt 2: Durchforhren des Werkzeugwechsels Datei: Turret1_Move.txt

M00

Schritt 3: Fortführen des Programmes Datei: Turret1_Change.txt M03

Schritt 4: Fortführen des Programmes Datei: Turret1_Get.txt M03

Automatic tool measurment system

Description:

AkkonDesk is able to perform automatic tool measurment. Die Vermessung erfolgt über einen vom Benutzer definierten Ablauf an einem Vermessungspunkt. Aktuell wird lediglich die Vermessung der Werkzeughöhe unterstützt. Die Definition des Ablaufes und des Vermessungspunktes erfolgen analog zur Definition von Werkzeugwechsel.

Jedes Werkzeug verfügt über einen Parameter names Flag über den bestimmt wird ober nach einem Werkzeugwechsel eine Vermessung erfolgen soll. Der Parameter kann im Dialog zur Werkzeugparametrierung angepasst werden.

Ablauf:

Nach einem Werkzeugwechsel wird geprüft, ob das aktuelle Werkzeug vermessen werden soll. Ist das entsprechend Flag gesetzt, dann wird der G-Code zum Vermessen eingefügt. Stösst der Programmgenerator im Automatikbetrieb auf den command M53, dann sendt er diesen dem CNC-Controller. Anschliessend wartet AkkonDesk bis der Vermessungspunkt erreicht wurde. Bis dahin erfolgt keine Verarbeitung von G-Code-commanden und Sendn an den CNC-Controller. Wenn der CNC-Controller den command M53 ausführt, dann fährt die Frässpindel so lange in negative Z-Richtung bis der Endschalter V0 ausgelöst wird. Anschliessend wird die Werkzeughöhe aus DeltaH = M0.z - V0Z berechnet und der Parameter DeltaH des entsprechendn Tools geändert. Danach setzt AkkonDesk mit der Abarbeitung des Programmes fort.

Hardware:

1 Endschalter am Frästisch, ein digitaler Eingang an der CNC-Steuerung. Sobald der Endschalter schaltet wird die z-Achse gestoppt.

G-Code for die Werkzeugvermessung:

Inhalt der Datei TT0_AutoToolMeasureme0_Home.txt M05 G00 x400 Y20 Z30 ; fahre zur Werkzeugwechselposition

Example: Inhalt TT0_AutoToolMeasure0_Store.txt (measure):

G01 z50 ; langsam abfahren

M53 ; fahre in –z bis Endschalter V0 anspricht, berechne anschliessend DeltaH und verfahre weiter im Programm G00 z30

©2005-2016 Gerhard Burger